Two-level correlation function of critical random-matrix ensembles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-level correlation function of critical random-matrix ensembles

The two-level correlation function Rd,β(s) of d-dimensional disordered models (d = 1, 2, and 3) with long-range random-hopping amplitudes is investigated numerically at criticality. We focus on models with orthogonal (β = 1) or unitary (β = 2) symmetry in the strong (b ≪ 1) coupling regime, where the parameter b plays the role of the coupling constant of the model. It is found that Rd,β(s) is o...

متن کامل

Wave function structure in two-body random matrix ensembles

We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave functio...

متن کامل

Limit Correlation Functions for Fixed Trace Random Matrix Ensembles

LetHN be the set of all N×N (complex) Hermitian matrices, and let trA = ∑N i=1 aii denotes the trace of a square matrix A = (aij) N i,j=1. HN is a real Hilbert space of dimension N with respect to the symmetric bilinear form (A,B) 7→ trAB. Let lN denotes the unique Lebesgue measure on HN which satisfies the relation lN(Q) = 1 for every cube Q ⊂ HN with edges of length 1. A Gaussian probability ...

متن کامل

Anomalously large critical regions in power-law random matrix ensembles.

We investigate numerically the power-law random matrix ensembles. Wave functions are fractal up to a characteristic length whose logarithm diverges asymmetrically with different exponents, 1 in the localized phase and 0.5 in the extended phase. The characteristic length is so anomalously large that for macroscopic samples there exists a finite critical region, in which this length is larger tha...

متن کامل

Power-law eigenvalue density, scaling, and critical random-matrix ensembles.

We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a scaling appropriate for such power-law densities (different from the scaling required in Gaussian random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2005

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.71.024205